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Abstract. This paper delves into the pricing of down-and-in put option, inte-
gral to the complexity of derivatives like autocallables5 . These options are sen-
sitive to the skew and the autocorrelation of the underlying process rendering flat 
volatility pricing inadequate for the purpose of pricing and risk management. The 
study initiates by elucidating the risk profile of these products, specifically fo-
cusing on their vanna and volga. It then advances to evaluate the effectiveness of 
machine learning and deep learning technique in pricing. Through detailed com-
parative analysis, the paper cotributes to sheding light on leveraging AI for pric-
ing derivatives and equity linked annuities6. 
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1 Introduction 

1.1 Background and Motivation 

Down-and-in put options are frequently embedded within more complex derivative 
structures, such as autocallables and exotic basket options, thereby contributing to the 
intricate risk profile of these financial instruments (Bouzoubaa & Osseiran, 2010). 
While first-order Greeks such as Delta, Gamma, and Vega are well-understood, the 
literature exhibits a noticeable gap regarding the analysis of higher-order and cross 
Greeks, such as Volga and Vanna, despite their prevalent application in the pricing of 
FX exotic derivatives (Ovejero, 2022; Shkolnikov, 2009). Most studies tackle the 
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greeks of barrier options from a computational perspective (Cuomo, Sica, & Toraldo, 
2020; Guardasoni & Sanfelici, 2016; Jang, Wang, & Kim, 2019; Jeannin & Pistorius, 
2010; Kim, Cao, Kim, & Zhang, 2023; Saporito, 2020; Yang, Ma, & Liang, 2018). In 
particular, the authors in (Chiarella, Kang, & Meyer, 2012) address the challenge of 
numerically computing barrier option prices under Heston stochastic volatility. They 
introduce a method of lines approach, capable of efficiently pricing both continuously 
and discretely monitored barrier options, including those with early exercise features, 
and computes the early exercise boundary for American barrier options in both scenar-
ios. Based on Broadie and Kaya's work (Broadie & Kaya, 2006), the enhancement of 
stochastic volatility model simulations is achieved by integrating rejection sampling, 
conditional Monte Carlo, and antithetic variable techniques, thereby improving the ac-
curacy, and reducing the variance in pricing Barrier Options and their Greeks, and of-
fering applicability to more complex financial products (Yang et al., 2018). In the same 
vein, utilizing a two-dimensional partial integro-differential equation and Fourier in-
verse transforms, a closed-form integral solution for pricing barrier options within 
Heston and Bates frameworks is available (Guardasoni & Sanfelici, 2016) . It enables 
an efficient, accurate numerical scheme based on the boundary element method, ex-
tendable for computing Greeks. The author of (Saporito, 2020) presents an efficient 
Monte Carlo method for approximating path-dependent derivatives prices under mul-
tiscale stochastic volatility models, utilizing functional Itô calculus and Malliavin cal-
culus to derive a first-order price approximation formula, requiring only Black–Scholes 
model simulations and applicable to various path-dependent derivatives.  
 
Concurrently, it is possible to extend the Black-Scholes model to encompass local vol-
atility models for pricing barriers products (Funahashi & Kijima, 2016), the local vol-
atility is defined as univariate functions of the spot price. The pricing of barrier options 
within this framework is decomposed into the valuation of three distinct European op-
tions. Two of these options are underpinned by an underlying asset, the volatility of 
which is derived from a composite function. This function combines the original local 
volatility model with a secondary function that maps the spot price to its reflected coun-
terpart below the barrier level, thereby engendering a new local volatility surface. To 
price European options under this modified diffusion process, the study employs an 
approximation method based on the Wiener-Itô Chaos expansion. The results are satis-
factory. However, it is noteworthy that the method, although applicable to Constant 
Elasticity of Variance (CEV) stochastic volatility diffusions, does not universally ex-
tend to Dupire's Local Volatility. 
 
The authors in (Euch & Rosenbaum, 2018) investigate the conceptualisation of a per-
fect hedge within a rough volatility model, establishing its theoretical feasibility, albeit 
without practical application to a designated financial derivative. The relevance of Lo-
cal Stochastic Volatility (LSV) models over the Black Scholes model for hedging bar-
rier options is affirmed through a comparative analysis of the profit and loss distribu-
tions from hedged positions linked to knock-out barrier options, a common instrument 
in the foreign exchange market, under both modelling approaches (Ning, Lee, & 
Langrene, 2017). 
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The study in (Umeorah, Mashele, Agbaeze, & Mba, 2023) utilises closed-form expres-
sions for barrier option pricing, specifically down-and-out calls, within the Black-
Scholes framework, comprising the vanilla option price minus a correction term derived 
via the reflection principle. It thereby facilitates the derivation of first-order Greeks in 
closed form, which are then employed to train a Multilayer Perceptron (MLP). The 
investigation is confined to scenarios with constant volatility, excluding considerations 
of volatility skew or term structure. The efficacy of MLPs is compared against Polyno-
mial and Random Forest regressors, with the optimal neural network architecture en-
compassing three hidden layers, a consistent dropout rate of 10%, and node configura-
tions of 512, 32, and 352, respectively for a total 905 nodes and 32 096 connections. 
Although the Neural Network's R-squared score marginally trails that of a fourth-de-
gree Polynomial regressor, it requires tenfold the computational time for training. Fur-
ther, this neural network architecture is retained to train on a higher-dimensional dataset 
that includes three additional entries representing delta, gamma, and vega. 
 
The present paper addresses second-order derivatives involving volatility and delves 
into the perfect hedge within the shifted lognormal framework. Which exhibits the in-
herent non-linearity of the pricing function, underscoring the imperative need for ad-
vanced numerical methodologies to accurately value such securities. The study's con-
centration is exclusively on down-and-in put options, offering a detailed exploration in 
this specific context. 
 
Furthermore, we explore the use of machine learning and deep learning methods to 
price this product. Traditional computational methods, whilst reliable, can be cumber-
some and resource-intensive, particularly when analysing portfolios laden a plethora of 
derivative structures. Machine learning models, post-training, promise expeditious 
pricing and scalability (Géron, 2019), quintessential for real-time trading applications. 
What is more, machine learning algorithms are particularly adept at capturing the 
highly nonlinear and multivariable valuation map to price down-and-in options, a ca-
pacity that conventional quantitative models might not fully achieve.  
 
Our methodology, while bearing resemblance to that outlined in (Umeorah et al., 2023), 
diverges notably in its application to a distinct product - specifically, Down-and-In puts 
instead of Down-and-Out calls. Furthermore, our approach introduces a volatility 
model that accounts for both the volatility smile and term structure7. It is pertinent to 
highlight that we adopt a parsimonious approach regarding the incorporation of addi-
tional nodes and layers, reserving more intricate architectures for models and products 
of greater complexity in forthcoming studies. This includes scenarios where the feature 
vector encompasses the entirety of the local volatility grid, model exotic parameters, 
and features of structured products. Regarding tree methods, our approach employs a 
boosting algorithm incorporating bagging (Fávero, Belfiore, & de Freitas Souza, 2023), 

 
7 It is important to acknowledge that this model's complexity is somewhat constrained, being 

regulated by a singular additional parameter. 
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which involves training numerous decision trees and subsequently amalgamating their 
outputs. 

1.2 Problem Statement and Objectives 

A down-and-in option exhibits heightened sensitivity to skew (Fagnant, 2016), par-
ticularly to the decay of skew over time. To incorporate the dynamics of skew while 
retaining the computational simplicity afforded by the Black-Scholes framework, one 
may utilise the shifted lognormal model as a convenient approximation (Privault, 
2022). For this study, we make the simplifying assumption of disregarding rebate, in-
terest rates and dividend yields. Accordingly, the model encompasses six key parame-
ters: the spot price of the underlying asset, the strike price of the option, the barrier 
level, and two volatility parameters 𝜎!, serving as a proxy for skew, and 𝜎", which can 
be interpreted as a representation of the overall level of the volatility surface—comple-
mented finally by the option's time to maturity. Less complex models tend to generalize 
better in machine learning which is crucial to our study (Liu, Li, Shan, & Liu, 2024; 
Reunanen, Guyon, & Elisseeff, 2003; Ying, 2019)8. 
 
Once the non-linear aspect of the pricing function is established, our objective is to 
evaluate the efficacy of various machine learning techniques, notably ensemble meth-
ods such as eXtreme Gradient Boosting (XGBoost) (Chen et al., 2015), and Deep Neu-
ral Networks (DNNs), in approximating the function that maps observable features to 
the price of an option. This endeavour illustrates a specific instance of a broader aca-
demic inquiry: the approximation of multivariable, nonlinear functions via machine 
learning techniques. 

2 Theoretical framework 

2.1 Product description 

Down-and-in option is a type of barrier option that becomes active when the price 
of the underlying asset falls below a certain level B, known as the barrier. If the price 
of the underlying asset does not fall below the barrier, the option expires worthless. 
Down-and-in options are used by investors to hedge against downside risk or to specu-
late on the price movements of the underlying asset (Hull, 2022). 
 
In Autocallable notes with terminal down-and-in payoff (Fagnant, 2016)9, the strike is 
at the money forward and the barrier is the factor that allows the structurer to control 
the price of the equity leg by setting the value of the structured coupon. Additionally, 

 
8 In comparison, Heston model has additional 5 features. 
9 The down-and-in put option in autocallables is typically linked to an index or the worst-of a 

basket of stocks which introduces an additional layer of complexity beyond the scope of our 
current study. 
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the put option is typically structured with a "
#$%&'(

 gearing to ensure that the maximum 
loss is limited to the notional amount. 
 
 

 
Figure 1 The payoff of a down-and-in put at maturity 

The following formula elegantly decomposes a Down&In Put into a portfolio of sim-
pler products: a vanilla Put, a Down&In Call Spread, and a Down&In Digit Put.  
 
𝑃)&+(𝐾, 𝐵) = (𝐾 − 𝐵)𝑃𝐵)&+(𝐵) + 𝑃𝑢𝑡(𝐵) − -𝐶𝑎𝑙𝑙)&+(𝐵, 𝐵) − 𝐶𝑎𝑙𝑙)&+(𝐾, 𝐵)1 

 
The Down&In Call Spread with zero inner value at the barrier level is  insensitive to 
volatility. Elsewhere 𝐶𝑎𝑙𝑙)&+(𝐾, 𝐵)	and notably	𝐶𝑎𝑙𝑙)&+(𝐵, 𝐵) both display low Vegas. 
The Down&In Digit Put component bears the discontinuity embedded in the Down&In 
Put and is sensitive to skew modelling. 
 

 
Figure 2 The price of a Down-and-In American digital put option. 
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The skew contribution to the price can be assessed by understanding the dynamics of 
the future skew over time10. Under the Dupire local volatility model, the skew sensitiv-
ity ,-($,0,1)

,1
3
134

decays throughout the lifetime of the product. In practice, that translates 

to the following parametrisation: 
 

∂σ(𝑡, 𝑇, 𝐾)
∂𝐾 7

134
= 𝜑(𝑡)

∂σ(0, 𝑇, 𝐾)
∂𝐾 7

134
 

 
Which links future skew to spot skew. 𝜑(𝑡) is a decreasing function in terms of t. Given 
that the local volatility model generates flatter smiles for longer maturities compared to 
homogeneous stochastic volatility models, the inverse of the values of  𝜑 is superlinear.  
 
The skew correction applies to the Black and Scholes price which is (Shreve, 2004): 

e5(05$)%𝔼∗ <(𝐾 − 𝑆0)7𝟙89!
":4; ∣ ℱ$A

= 𝟙89#
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Where 𝑚!

0 = min$∈[!,0] 𝑆$ , Φ the cumulative distribution function of standard gaussian 

and 𝑑±0 =
GHI%&'#(%#%&)(%#

±&$-&
$0

-&√0
 

 
It must be noted that the skew decay, in and of itself, is a broad topic. The future skew 
decay for longer maturities as observed in local volatility surfaces is unsatisfactory and 
was historically the real motive behind the introduction of local stochastic volatility 
model (Lipton, Gal, & Lasis, 2014; Ren, Madan, & Qian, 2007). As a matter of fact, all 
diffusion stochastic volatility models yield a long term ATMF11 skew decay propor-
tional to "

0
 which corresponds to market observations but fall short of satisfying the 

 
10 The skew correction is the mean value of 𝑉𝑒𝑔𝑎!&#(𝜏, 𝑇, 𝐵) × $%(',),*)

$* ,
*,!

, where τ is the 

crossing time. 
11 At the money forward, given that we ignore rates and repo in the present study the forward and 

the spot are equal and so are the corresponding implied volatilities 
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ATMF skew decay shape for short term volatility smiles which is empirically measured 
to be proportional to 𝑇K5

&
$ where 𝐻 ∈ A0, "

A
<. This observation has led to the adoption 

of two-factor diffusion stochastic volatility models and subsequently to the introduction 
of rough volatility models, wherein 'H' denotes the Hurst parameter (Gatheral, Jaisson, 
& Rosenbaum, 2017). Local Stochastic volatility models , including Dupire model, are 
not dynamically consistent with such power law for short maturities (Fukasawa, 2017) 
nor are single factor stochastic volatility models such as Heston. 
 
The prevailing notion of power law universality for major equity indices encounters 
substantial challenge in this analysis (Guyon & El Amrani, 2022) . It is observed that 
the asymptotic skew for extremely short maturities tends to converge to finite values, 
necessitating the modification of the power law skew curve to incorporate a cap within 
a three-week period. Consequently, this gives rise to a dichotomy in skew regimes, 
distinguishing between short and medium maturities. Subsequently, the authors engage 
in an empirical examination to find the model that most accurately aligns with the ob-
served skew term structure. Their findings reveal that a relatively straightforward four-
parameter term structure ATMF skew curve which pertains to a Markovian two-factor 
Bergomi model demonstrates superior efficacy in this context when compared to those 
generated by rough volatility (Bergomi, 2005, 2008).  
 
Considering these elements, the methodology employed in our current research es-
chews the need for a layered approximation of this effect. Instead, it uses a model that 
not only exhibits a non-trivial local volatility surface but also directly offers analytical 
formulae for pricing Down-and-In barrier options. 

2.2 Shifted lognormal volatility model. 

The shifted lognormal model (also known as the displaced diffusion model) is a dif-
fusion process whose volatility structure is a linear interpolation between the normal 
and lognormal volatilities (Lesniewski, 2014; Privault, 2022). The dynamics of the for-
ward can be expressed as: 
 

𝑑𝐹(𝑡) = (𝜎"𝐹(𝑡) + 𝜎!)𝑑𝑊(𝑡) 
 
The volatility structure of the shifted lognormal model is given by the values of the 
parameters 𝜎!	𝑎𝑛𝑑	𝜎". 
 
The model was first introduced in (Rubinstein, 1983) by leveraging existing Black 
Scholes formula to evaluate a constant weight portfolio consisting of a risky asset and 
a riskless security. It was then mainly used to generate smile in rates , credit models 
(Brigo & Mercurio, 2002; Dimitroff, Fries, Lichtner, & Rodi, 2016; Liu & Jackel, 2005; 
Mercurio & Pallavicini, 2005) and ,to a lesser extent, in equity (Chen & Lee, 2010; 
Chibane, 2013; Jackel, 2006; McCloud, 2010; ‘Shifted log-normal distribution and 
moments’, in press). 
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The shifted lognormal volatility diffusion generates a smile which is monotonous in 
terms of strikes and whose skew is bounded in absolute value (Lee & Wang, 2012). 
The implied volatility surface also displays an asymptotic value of volatility for higher 
strikes across maturities. All of which impedes fitting the model at will to different 
skew and smile scenarios. The authors suggest using a variant of the model for variance 
reduction purposes in Monte Carlo simulations. 
 
The prices of calls and puts are given by the functions 𝐵𝑙slncall(𝑇, 𝐾, 𝐹!, 𝜎!, 𝜎")	and 
𝐵𝑙sln

put(𝑇, 𝐾, 𝐹!, 𝜎!, 𝜎") which generalise both Black Scholes formula and Bachelier for-
mulae corresponding to lognormal and normal models respectively: 
 

𝐵𝑙slncall(𝑇, 𝐾, 𝐹!, 𝜎!, 𝜎") = H𝐹! +
𝜎!
𝜎"
IΦ(d7T) − H𝐾 +

𝜎!
𝜎"
IΦ(d5T) 

 
The shifted lognormal model allows for a non-constant, strike-dependent implied vol-
atility. This is achieved by a transformation of the spot price, strike price, and barrier 
price, which is given by x→x+-#

-&
. The skew is negative, and its absolute value is an 

increasing function of 𝜎! the while 𝜎" controls the level of the entire surface.  
 
In line with (Bergomi, 2017), the shifted lognormal is a model in that there is a break-
even constant volatilty σ∗	 which links the theta of the model to its Gamma . The P&L 
is the product of the Gamma and the difference between the realised and the breakeven 
variance. Such a model is arbitrage free. 
 
The perfect vega hedge of the volatility surface in the shifted lognormal model requires 
two vanilla puts/calls: Although the volatility surface is not flat, it is still completely 
determined by two parameters 𝜎!	𝑎𝑛𝑑	𝜎". In Local Volatility model, the constitution of 
such a hedge requires the computation of the hedge ratio at every single point of the 
volatility grid. The feasibility of such a hedge as well as the weights obtained by re-
course to Malliavin calculus are discussed in (Henry-Labordere, 2013; Kettani & 
Reghai, 2020) 

2.3 Sensitivity Analysis 

In this section, unless otherwise specified, the characteristics of the down-and-in put 
option with continuous monitoring and without early exercise feature along with its 
perfect vega hedge are set as follows: 
  

Option Type Strike Barrier Maturity (years) F0 𝝈𝟎 𝝈𝟏 
Down-and-In Put 55 40 1 60 5 16% 
Vanilla Put 1 45 N/A 1 60 5 16% 
Vanilla Put 2 65 N/A 1 60 5 16% 
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Below are the curves and surfaces of the value of the portfolio consisting in the Down-
and-In put with its vega and delta hedge as function of different features. The Down-
and-In put displays negative Volgas, second order derivative, in terms of both 𝜎! and 
𝜎". The gamma of the portfolio is zero hence we perceive a third order behaviour in 
Figure 4 . Under a perfect delta and vega hedge the expectation of the future gamma, 
conditional to any value of the underlying, is nil (Henry-Labordere, 2013).  
 

 
Figure 3 Negative 𝑣𝑜𝑙𝑔𝑎- (left) and 𝑣𝑜𝑙𝑔𝑎. (right) 

 

 
Figure 4 Nil Gamma, third order sensitivity displayed. 

In each of Figure 5 and Figure 6, The surface to the left is that of a vanilla put and that 
to the right pertains to the down-and-in put both struck at 55. Both 𝑉𝑒𝑔𝑎! and 𝑉𝑒𝑔𝑎" 
display a similar dependence on spot and 𝜎! and 𝜎" respectively. 
 
The figures hint at 𝑉𝑎𝑛𝑛𝑎! and 𝑉𝑎𝑛𝑛𝑎" terms, cross derivatives in volatility and Spot, 
which change sign and are zero around the strike of the down-and-in put. The vegas of 
the down-and-in put display a more pronounced dirac spike behavior for low sigma 
values. 𝑉𝑒𝑔𝑎! is a proxy for sensitivity to the skew. The latter, although having a term 
structure, is controlled by one single parameter 𝜎!. 
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Figure 5 𝑉𝑒𝑔𝑎.in terms of 𝜎. and initial Spot 𝐹- (Vanilla Put to the left and DI put to the right) 

  
Figure 6 𝑉𝑒𝑔𝑎-in terms of 𝜎- and initial Spot 𝐹- (Vanilla Put to the left and DI put to the right) 

The change of the sign of Vanna makes hedging the barrier complicated. In practice, it 
is limited in absolute value when compared to Volga. The latter is negative and con-
tributes positively to the P&L of the seller. However, the Vanna term becomes im-
portant when the DI put option is embedded in an autocallable. In this case, the Vanna 
term is amplified by the presence of the survival indicator function which further com-
plicates the rebalancing of the vega hedge (Guennoun, 2019).  
 
To ascertain the accurate pricing of prospective hedging costs, it is imperative that the 
model is crafted to embed, from its inception, a proper dynamic for implied volatilities 
that aligns with the historically observed patterns. 
 



11 

Expressed in an alternative manner, an apt model necessitates the integration of a theta 
that balances the vanna and volga. This aspect holds significantly greater importance 
than the model's capacity to precisely replicate the current smile surface (Cont, 2008). 
 
We have established that pricing down-and-in options is a complex task. An effective 
model must provide realistic dynamics for input variables and an accurate function that 
maps these variables to a fair price. This is crucial, among other things, for generating 
the correct theta. We will now move forward with using machine learning to estimate 
the precise relationship between parameters and fair prices. Temporarily setting aside 
the task of accurately modelling the joint distribution and dynamics of underlying as-
sets, we will provide justification for this approach. 

2.4 Role of Machine Learning in Finance 

The necessity for utilising machine learning algorithms in the pricing of financial 
derivatives is twofold. Machine learning offers the prospect of deriving complex rela-
tionships between derivative prices and their various features, which are otherwise ar-
duous to model using traditional, tractable equations. By training these algorithms on 
expansive sets of historical data, one can potentially unearth subtle, non-linear relation-
ships that would remain elusive to conventional financial models. 
 
Once trained, these machine learning models are highly efficient to execute, thereby 
affording even smaller market participants, particularly those on the sell side, the ca-
pacity to adeptly manage their positions in increasingly sophisticated financial prod-
ucts. This is particularly pertinent for small to middle entities such as pension funds 
and insurance companies, which may lack the expertise to otherwise engage with these 
complex instruments effectively.  
 
However, it must be acknowledged that the training phase represents a considerable 
bottleneck in the deployment of such machine learning models (Reis & Housley, 2022). 
Given the inherently non-linear nature of derivative pricing, a voluminous dataset, often 
comprising millions of data points, is requisite for adequately training the model. In 
this context, the shifted lognormal model, employed in the current study, serves as a 
compromise between simplicity and exhaustivity. Notably, it incorporates a feature de-
signed to control the skewness of the implied volatility, a parameter to which down-
and-in put options are notably sensitive.  

2.5 Mathematical context 

The Universal Approximation Theorem (UAT) posits that a feed-forward neural net-
work with merely a single hidden layer can approximate any continuous function to an 
arbitrary degree of accuracy (Voigtlaender, 2023). This extraordinary capability is con-
ditional upon the neurons in the hidden layer employing a non-constant, bounded, and 
monotonically increasing continuous activation function. The theorem is most pertinent 
to functions defined on compact subsets of 𝑅W . However, it is crucial to recognise that 
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while the theorem elucidates the theoretical potential of neural networks as general 
function approximators, it does not offer specific guidance on the optimal architecture 
or parameterisation, leaving these questions to empirical investigation(Scarselli & Tsoi, 
1998). 
 
In approximating non-convex functions, neural networks confront a complex landscape 
replete with intricate topological features like multiple peaks, valleys, and even discon-
tinuities where the function is not differentiable. These discontinuities pose a particu-
larly nettlesome challenge, given that neural networks primarily rely on gradient-based 
optimisation techniques (Deng, Wang, Qin, Fu, & Lu, 2022). At these points, the gra-
dient ceases to exist, making it arduous for the network to learn the function's behaviour 
in these regions. Even minor inaccuracies near these discontinuities could lead to dis-
proportionate errors in the approximation. 
 
Adding to the complexity, the so-called 'curse of dimensionality' implies that the vol-
ume of the space under consideration grows exponentially with the number of variables. 
This necessitates an ever-greater corpus of data for effective approximation, particu-
larly for non-convex, multi-variable functions (Magai & Ayzenberg, 2022). The impli-
cations of this are far-reaching, especially in instances where data collection is prohib-
itively expensive or time-consuming. Furthermore, the network's architecture consists 
of local approximators like activation functions, and the challenge lies in ensuring that 
these local approximations coalesce to represent the global behaviour of the function 
accurately. Such a task becomes increasingly intricate in regions of high non-linearity 
or rapid changes in the function. 
 
In the current study, we have retained Deep Neural Networks (DNNs) and Extreme 
Gradient Boosting (XGBoost) for function approximation. These algorithms offer sub-
stantial benefits in capturing complex relationships within data but are not without their 
challenges, such as overfitting and increased computational requirements. However, 
their potential to deliver heightened accuracy, especially in high-dimensional and non-
linear scenarios, makes them compelling choices. 

3 Methodology 

3.1 Data Collection and Preprocessing 

The table below summarises the ranges of each feature that is selected randomly and 
plugged into the modified Black-Scholes formula for shifted lognormal to generate one 
million data points which split into two thirds for training and one third for testing. 
 

FEATURE RANGE 
SPOTS 50 to 150 (20 values) 
Σ0 2 to 20 (20 values) 
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Σ1 0.05 to 0.5 (20 values) 
STRIKES 20 to 120 (20 values) 
BARRIERS 10 to 100 (20 values) 
MATURITIES 0.01 to 5 (20 values) 

 
Table 1 Features selection intervals. 

These ranges ensure a comprehensive sampling of each feature, providing a robust 
foundation for the study. 
 
Data is generated within a 6-dimension hypercube, following a uniform distribution, 
thus sidestepping the complexities of correlated feature behaviour between the spot, σ!, 
and σ". The consequence of such a procedure is twofold. It simplifies the learning pro-
cess by focusing solely on the mapping between the feature vectors and the derivative 
prices (Mishra, 2022). Moreover, it alleviates model risk related to changes in feature 
interdependencies—for instance, a sudden shift from positive to negative correlation as 
illustrated in Figure 7. This methodology confers additional virtues, such as the avoid-
ance of localised model biases and the enhancement of robustness in the model's gen-
eralisation capabilities (Hua et al., 2021; Jin, Liu, Ma, Aggarwal, & Tang, 2022; Liu, 
Wang, Li, & Fu, 2021; Shen et al., 2020). 
 

 
Figure 7 Correlation of S&P 500 and US Treasury returns(‘Markets adjust to “higher for 

longer”’, 2023) 

By disrupting intrinsic data patterns, the process effectively mitigates the risks associ-
ated with overfitting (Reis & Housley, 2022). Moreover, the stochastic nature of the 
sampling serves as a countermeasure against the neural network algorithm's sensitivi-
ties to the sequence and arrangement of training data, thereby circumventing pitfalls 
such as local minima entrapment. Complementarily, the approach is computationally 
efficient, dynamically adjustable, and inherently conducive to data augmentation, noise 
tolerance, and objective post-training evaluation. 
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Nevertheless, there are limitations inherent to this approach. The most salient among 
these is the risk that the generated data may not be fully representative of real-world 
conditions, particularly if the underlying distribution for generation deviates markedly 
from the actual distribution. Additionally, a poorly calibrated random sampling mech-
anism could inadvertently focus the model on anomalous data points, thereby skewing 
its learning towards outliers. Thus, while the methodology has demonstrable merits, it 
also necessitates a considered implementation to ensure that the resultant model is both 
robust and applicable. 
 
Next in the machine learning pipeline, the MinMaxScaler was retained for feature nor-
malisation, as it provides an efficacious avenue for scaling the features into a prescribed 
range, typically between 0 and 1. Such scaling is pivotal for various machine learning 
algorithms, particularly those predicated upon distance metrics like k-NN, as well as 
gradient-based algorithms, facilitating improved performance and accelerated conver-
gence (Géron, 2019). Furthermore, the MinMaxScaler offers interpretability ad-
vantages, conferring a uniform range across features that augments the interpretive clar-
ity of model coefficients. It also enhances numerical stability by constricting the feature 
values within a defined range, thereby mitigating the risk of numerical overflows, a 
nontrivial consideration in computational settings. 

3.2 Machine Learning Techniques12 

The application of Deep Neural Networks (DNNs) and Extreme Gradient Boosting 
(XGBoost) for the purpose of pricing down-and-in options presents a compelling case. 
Introduced in the 1980s, DNNs have evolved to comprise multiple layers with a high 
degree of freedom, thereby demonstrating an aptitude for capturing complex, non-lin-
ear relationships. XGBoost, a tree-based ensemble method introduced in 2014 (Chen et 
al., 2015), is renowned for its high-performance and capability to model intricate pat-
terns(Sagi & Rokach, 2021). The algorithm uses boosting13 to convert weak learners 
into a strong predictive model.  
 
There remains an intriguing possibility for XGBoost to outperform DNNs under certain 
conditions (Güvenç, Çetin, & Koçak, 2021). XGBoost often demonstrates resilience 
against overfitting, particularly with its capacity for automatic feature selection and 
regularisation, which could offer a distinctive advantage in situations where data is 
sparse or particularly noisy. Furthermore, the interpretability of XGBoost models could 
be beneficial for risk assessments and regulatory compliance, facets not to be over-
looked in financial contexts. Hence, the decision to employ both DNNs and XGBoost 
not only capitalises on their respective strengths but also furnishes a robust 

 
12 The tests were conducted on an NVIDIA P100 GPU on the Kaggle cloud. 
13 Each new tree takes a step in the direction that minimizes the loss function, akin to how gradient 

descent works for differentiable functions. This "gradient" step is why the method is termed 
"gradient boosting" (Wade, 2020) 
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methodological framework that could accommodate the nuanced complexities inherent 
in option pricing. 

4 Technical specifications and Results 

4.1 XGboost 

In the initial XGBoost Regressor configuration, several hyperparameters are speci-
fied to fine-tune the model's performance. The model seeks to minimise the squared 
error between predicted and actual values—a conventional choice for regression tasks. 
The number of boosting rounds or trees to be built is set at 20. The `max_depth` pa-
rameter is configured to limit the maximum depth of each decision tree to 7, which 
helps control the model's complexity and mitigate the risk of overfitting. The `learn-
ing_rate` parameter is set at 0.5, a high value that scales the contribution of each tree; 
this parameter effectively regularises the model by preventing rapid convergence to a 
suboptimal solution. The `early_stopping_rounds` parameter is employed and set to 20 
rounds, serving as an additional regularisation technique. Later 50 000 data points were 
taken from our input data to run grid search for optimal hyperparameters. 
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Figure 8 XGBoost metrics 

The loss function values for both the training and test datasets are nearly identical, it is 
generally indicative of a well-generalised model. Moreover, the Root Mean Square 



16 

Error hovers around 2.7 in both iterations. Despite the overall consistency, it is note-
worthy that a minuscule number of outliers exist within a large dataset comprising 
330,000 data points. Importantly, a graphical representation on  σ!𝑥	σ" grid demon-
strates that these anomalous points are not confined within any region of the features’ 
vector space. 

4.2 DNN 

For our deep neural networks (DNN), the learning rate was set at 0.01 and the model 
was trained for a maximum of 300 epochs to ensure both convergence and computa-
tional efficiency. To mitigate fluctuations in the loss function on the test set, the batch 
size was incrementally from 64 to 1024. We employed the Adam optimizer14 , 
LeakyRelu activation function15 and dropout as a regularisation technique. This com-
bination of hyperparameters and algorithms was chosen to bolster the DNN's capacity 
for robust and stable learning. 
 
In a chronological order of model development, various configurations of Deep Neural 
Networks (DNNs) were explored, each differing in the number of nodes per layer. Ini-
tially, an additional hidden layer was introduced with the intent of enhancing the mod-
el's performance; however, this led to a conspicuous instance of overfitting. Conse-
quently, the third iteration of the DNN was designed with three layers, albeit with a 
greater number of nodes per layer compared to the inaugural DNN. Notably, this did 
not induce any appreciable decrease of the Root Mean Square Error. To mitigate the 
propensity for overfitting, the subsequent version was adjusted to have fewer nodes per 
layer. In a final attempt to exploit the Universal Approximation Theorem, a DNN with 
a singular hidden layer comprising 10 nodes was employed, while extending the epoch 
count to 1000 from the initial setting of 300 and setting a cap on the error equal to 1 bp 
=105X. This computational endeavour necessitated an extensive training duration of 
nearly three hours after 1000 epochs. 
 

Architecture RMSE Training time 
1-30-20-10-1 33.87 20 min 34 

1-50-40-20-5-1 (overfit) 33.82 18 min 30 
1-50-30-10-1 33.85 19 min 47 
1-24-12-6-1 33.95 18 min 08 

1-10-1 (1000 epochs) 33.83 2 h 57 
 

 
14 A first-order gradient-based optimisation algorithm, particularly popular for its adaptive learn-

ing rate and efficient handling of sparse gradients 
15 The Leaky ReLU activation function is designed to solve the "dying ReLU" problem by al-

lowing a small, non-zero gradient when the input is less than zero. Its ability to permit negative 
values through a small constant α enables it to capture and approximate highly non-linear 
functions in euclidian spaces. 
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The stability of RMSE metric, which serves as a quantifiable representation of the mod-
el's prediction errors, suggests that further refinements are warranted to enhance the 
model's predictive accuracy. Moreover, it is noteworthy that the distribution of the re-
siduals—specifically the difference between the test and predicted values—exhibits a 
slight bias towards negative values.  
 
A vacillating trajectory in the validation loss (red) may signify a range of challenges or 
phenomena within the training procedure. One noteworthy possibility is that of overfit-
ting, particularly manifest when the training loss consistently diminishes whilst the val-
idation loss demonstrates intermittent fluctuations. 
 

Loss function per epoch  
(Blue: training, Red: test) 

Histogram of 𝒚𝒕𝒆𝒔𝒕 − 𝒚𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 
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Figure 9 Metrics for different DNN architectures 

4.3 Performance Comparison 

In the context of our empirical investigation, it was evident that XGBoost markedly 
surpassed the Deep Neural Network (DNN) in performance. While both XGBoost and 
DNNs possess distinct advantages and limitations contingent upon the particularities of 
the problem at hand (Elbrächter, Grohs, Jentzen, & Schwab, 2022), XGBoost demon-
strates a proclivity for excelling with structured data and the ability to manage missing 
values16.  
 
Several factors contribute to the superiority of XGBoost in approximating nonlinear 
multivariable functions. XGBoost models allows for straightforward tuning and expla-
nation of model decisions (Sagi & Rokach, 2021). Besides, the built-in regularisation 
techniques—L1 (Lasso) and L2 (Ridge)—significantly mitigate the risk of overfitting. 
In terms of simplicity, XGBoost typically requires fewer hyperparameter adjustments 
compared to DNNs, facilitating the rapid development of robust models (Wade, 2020). 
 
The results of the present investigation concur with the established consensus in the 
specialized literature (Grinsztajn, Oyallon, & Varoquaux, in press; Konstantinov & 
Utkin, 2023; Shwartz-Ziv & Armon, 2021). The paper (Grinsztajn et al., in press) shows 
that whilst deep learning exhibits prowess in text and image processing, its predomi-
nance in managing tabular data, especially of a medium scale (approximately 10,000 
samples), is not as pronounced. Notably, tree-based models continue to lead in this area, 
irrespective of their expedited processing capabilities. This research undertakes an ex-
amination to elucidate the factors contributing to this discrepancy. Furthermore, an 

 
16 In contrast, DNNs are adept at capturing intricate patterns and tend to perform exceptionally 

well in high-dimensional or unstructured data scenarios, such as image and text analysis. 
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additional paper (Shwartz-Ziv & Armon, 2021) assesses the comparative performance 
and calibration requisites of deep learning frameworks and XGBoost with tabular data. 
The investigation demonstrates the superior performance of XGBoost in diverse da-
tasets, achieved with comparatively minimal tuning. The paper subsequently concludes 
that an ensemble of deep learning models and XGBoost demonstrates improved perfor-
mance over XGBoost alone. 

5 Conclusion  

In the present study, we have elucidated the behaviour of second-order Greeks in 
down-and-in put options, employing a model that accommodates skewness. Our find-
ings demonstrate a marked superiority of the eXtreme Gradient Boosting (XGBoost) 
algorithm over Deep Neural Networks (DNNs) for the specified task of pricing this 
barrier option.  
 
For future scholarly endeavours, there are several compelling avenues to explore. Pri-
marily, the application of more sophisticated models for data generation would be per-
tinent, allowing for a richer feature set that could lead to more nuanced results. Alter-
nate neural network architectures could also be scrutinised for their efficacy in contrast 
to traditional DNNs in feed-forward settings. Most crucially, a promising approach con-
sists in incorporating transfer learning in the DNN process, enhancing the efficacy of 
pricing complex derivatives, or applying more sophisticated models by reusing and 
fine-tuning pre-trained layers (Neufeld & Sester, 2023). The integration of automatic 
differentiation frameworks ,such as Autograd in Pytorch (Mishra, 2022), holds signifi-
cant promise for the real-time hedging of financial instruments without requiring addi-
tional training. By leveraging existing work in this domain (Huge & Savine, 2020), we 
can extend our model's utility to not just pricing derivatives, but also to crafting optimal 
hedging strategies, thus providing a more holistic financial risk management solution. 
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